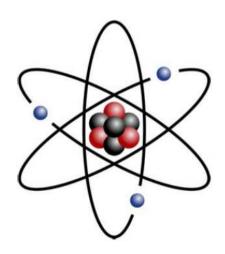
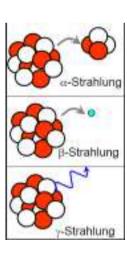
Warum Trinkwasser auf radioaktive Stoffe untersuchen?

IWW-Kolloquium am 21.04.2016
in Biebesheim

Achim Rübel, IWW Zentrum Wasser, Mülheim an der Ruhr achim.ruebel@iww-online.de


Radioaktivität


Radioaktivität (Radioaktive Stoffe / Radionuklide):

Eigenschaft von Atomkernen (Protonen, Neutronen),

sich spontan umzuwandeln

unter Aussendung von ionisierender Strahlung.

$$^{238}_{92}U \rightarrow ^{234}_{90} \text{Th} + ^{4}_{2} \text{He} + 4.198 \text{ MeV}$$

$$_{19}^{40}\text{K} \rightarrow _{20}^{40}\text{Ca} + _{-1}^{0}\text{e}\,\P$$

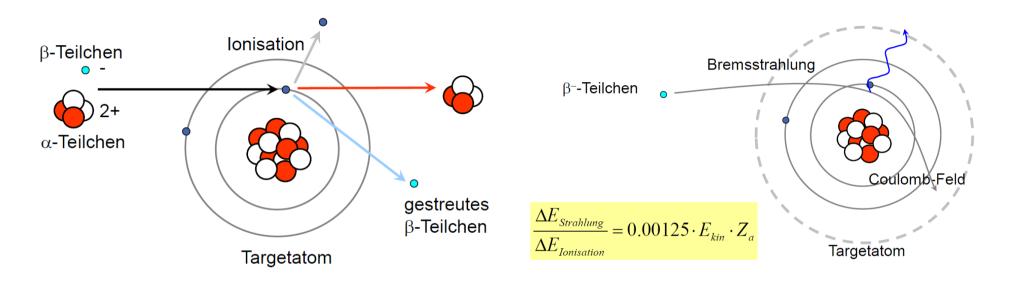
$$^{241m}_{91}$$
Pa $\rightarrow ^{241}_{91}$ Pa + γ ¶

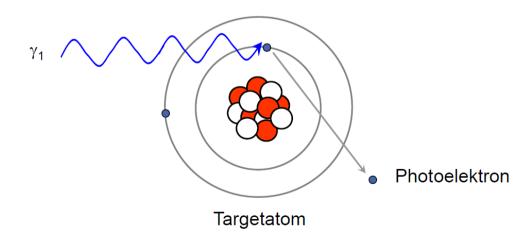
Ionisierende Strahlung

Strahlung ist Transport von Energie

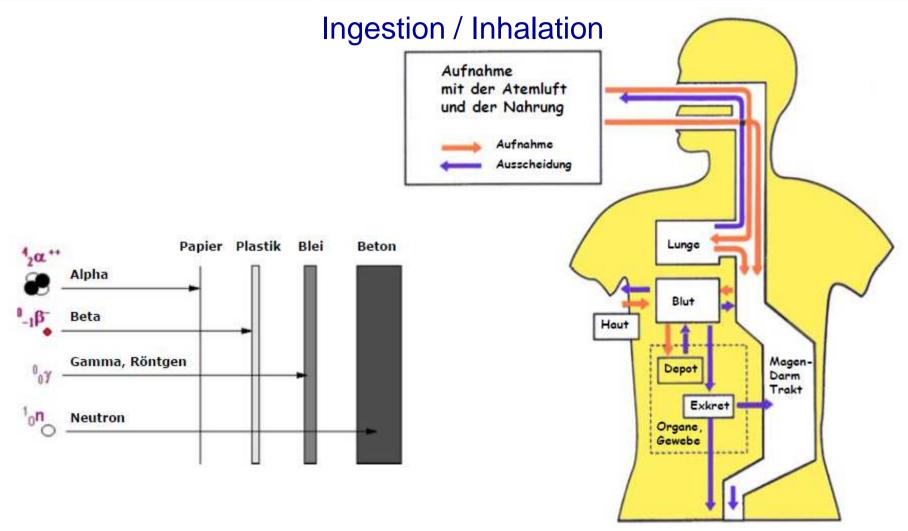
(Nicht radioaktive Strahlung)

- Materiestrahlung
 - Alpha-Strahlung
 - Beta-Strahlung
 - Neutronen
- Elektromagnetische Strahlung
 - Gamma-Strahlung


Strahlungsquanten


Strahlungsarten	Typische Energie	Reichweite in Luft	Ab- schirmung	Beispiele
α-Strahlung	5 MeV	4 cm	1 Blatt Papier	Radon 222, Radium 226, Plutonium- isotope
β-Strahlung	1 MeV	3 m	0,5 cm Plexiglas	Kalium 40 Cäsium 137 Strontium 90
γ-Strahlung	1 MeV	700 m	10 cm Blei	Nahezu alle Radionuklide

Energieübertragung von Strahlungsquanten: z.B. lonisierung



Ionisierende Strahlung: Aktivität ("Menge") – Dosis ("Wirkung")

Aktivität / Dosis

Aktivität: "Menge an Radioaktivität"

Anzahl der Zerfälle/Sekunde

Einheit: Becquerel (Bq)

Aktivitätskonzentration:

Bq/l

(Becquerel/Liter)

Dosis "Wirkung der Radioaktivität"

Maß für das gesundheitliche Risiko

Einheit: Sievert (Sv)

Richtdosis: mSv/a (Millisievert/Jahr)

Dosis

Energiedosis: absorbierte Strahlungsenergie pro Masse

$$D = \frac{\Delta E}{m} \quad [1 \text{ Gy}] = \left[\frac{1 J}{1 kg}\right]$$

Unterschiedliche biologische Wirkung bei gleicher Energiedosis

■ Äquivalentdosis: Energiedosis für menschliches Gewebe (w_R Strahlungswichtungsfaktor)

$$H = W_R \cdot D$$
 [1 $Sv[= [\frac{1J}{1 kg}]]$

■ Effektive Dosis: gewichtete Summe der Äquivalentdosen in allen Geweben und Organen

$$D_{\text{eff}} = \Sigma W_{\text{T}} \cdot H_{\text{T}} \qquad [Sv] = \left[\frac{1J}{1 \, kg}\right]$$

■ Richtdosis: spezielle Definition gemäß TrinkwV

Strahlenexposition: Quelle: Berichte der Bundesregierung (Stand 2012)

	Effektive Jahresdosis in mSv/Jahr
Ursprung der Strahlendosis	Mittelwert der Bevölkerung
Natürliche Exposition kosmische Strahlung terrestrische Strahlung Nahrung Radon- und Zerfallsprodukte	0,3 0,4 0,3 1,1
Summe: Natürliche Exposition	2,1
Zivilisatorische Exposition Röntgendiagnostik Nuklearmedizin Kerntechnische Anlagen Forschung/Technik/Haushalt Tschernobyl Atombombenfallout	1,8 0,1 < 0,01 < 0,01 < 0,011 < 0,01
Summe: Zivilisatorische Exposition	1,9
Summe: Natürliche + Zivilisatorische Exposition	4,0

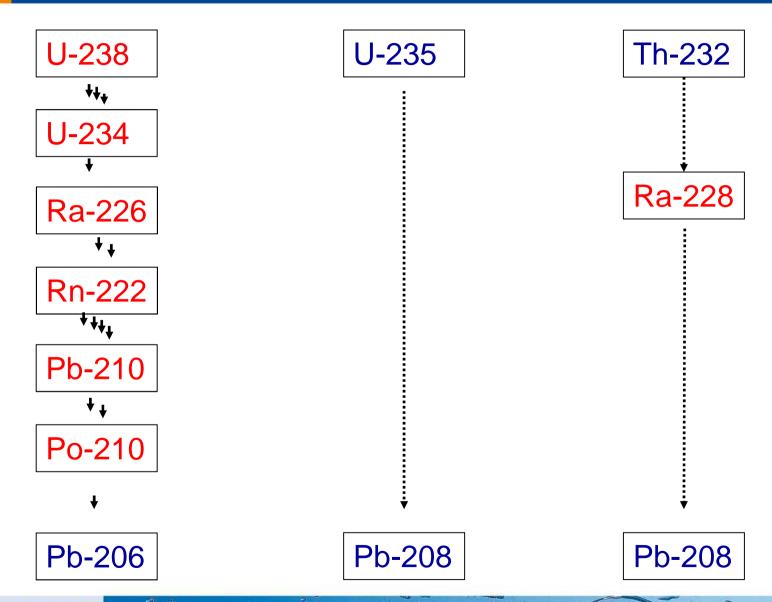
Radioaktive Stoffe

Natürliche Radionuklide

- Terrestrische Strahlung:
 Zerfall primordialer Radionuklide
 (seit Entstehung der Erde; lange Halbwertszeiten)
 - Zerfallsreihen: Uran-238, Uran-235, Thorium-232
 - Kalium-40
- Nachbildung in der Atmosphäre
 - Tritium (H-3), C-14, Be-7
- Kosmische Strahlung

Künstliche Radionuklide

- Kernkraft, Medizin, Technik, Wissenschaft...
- z.B. Cs-137, I-131, Sr-90, Pu-239, H-3


Wo kommt Uran vor?

- Äußere Erdkruste: Ø 2 4 mg/kg Gestein
 - weit verbreitet in Mineralien
 (~ 1000 x häufiger als Gold)
 - ca. 200 Uranmineralien
 - nur wenige Mineralien abbauwürdig (z.B. Pechblende)
 konvent. Abbau bei: 1000 5000 mg/kg Gestein
 - Primäre Lagerstätten (z.B. Granit, Gneis, Basalt)
 - Sekundäre Lagerstätten: Kalk- und Sandsteine, Sande, Kiese, anmoorige Gebiete
 - kleinräumig: "Urananomalien!!!"

Natürliche Zerfallsreihen mit dosisrelevanten Nukliden in Trinkwasser

Situation: vor der 3. Verordnung zur Änderung der Trinkwasserverordnung

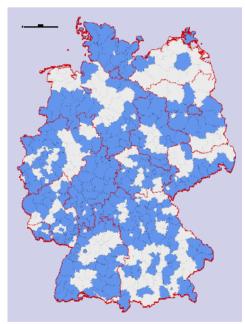
Parameterwerte für radioaktive Stoffe (Anhang III)

Ì	21	Tritium	Bq/l	100	Anmerkungen 3 und 4
	22	Gesamt- richtdosis	mSv/Jahr	0,1	Anmerkungen 3 bis 5

Anmerkung 5:

Mit Ausnahme von Tritium, K-40 und Radonzerfallsprodukten

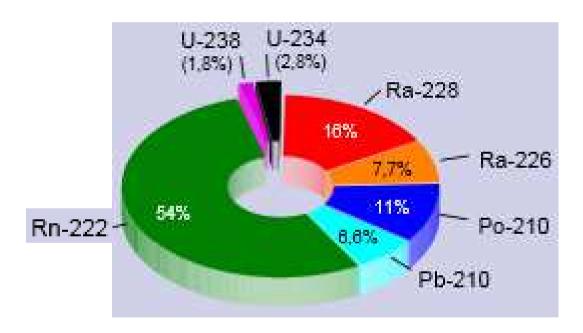
- Parameterwerte: nicht zur Gefahrenabwehr, sondern vorsorgender Gesundheitsschutz
- Keine Überwachung der Einhaltung der Parameterwerte
- Keine einheitliche Regelung zur Kontrollhäufigkeit, -methoden ...
- keine einheitliche Regelung zur Berechnung der Gesamtrichtdosis (dosisbezogen maximal zulässige Aktivitätskonzentrationen der dosisrelevanten Radionuklide)



Bundesamt für Strahlenschutz (BfS) - Studie 2009: Strahlenexposition durch natürliche Radionuklide im Trinkwasser

Aussagekräftige Übersicht über die Strahlenexposition durch natürliche Radionuklide im Trinkwasser in Deutschland

- 582 Trinkwasserproben
- Verteilt über Deutschland
- Schwerpunkt: größere Wasserversorgungsanlagen
- Gezielt auch in Gebieten mit höheren Belastung: Bayern, Sachsen, Thüringen, Baden-Württemberg, Rheinland-Pfalz, Sachsen-Anhalt


BfS-Studie 2009: Strahlenexposition durch natürliche Radionuklide im Trinkwasser

- Trinkwasser trägt nur geringfügig zur mittleren jährlichen Strahlenexposition in Deutschland aus natürlichen Quellen bei
 - Mittlere Ingestionsdosis:
 0,009 mSv/a bei Erwachsenen
 0,05 mSv/a bei Säuglingen
- Die Schwankungsbreite ist beträchtlich
- In Einzelfällen ist Reduzierung angezeigt
- "Eine Gefahr für die Gesundheit der Bevölkerung besteht auch bei höheren Konzentrationen nicht, obwohl aus Gründen der radiologischen Vorsorge zum Teil Handlungsbedarf besteht"

Dosisanteile durch Trinkwasser (Median) / innere Exposition (BfS, 2009)

Gesamt-Ingestionsdosis

Bildquelle: BfS, 2009

Situation: mit der 3. Verordnung zur Änderung der Trinkwasserverordnung

- Untersuchungspflicht für radioaktive Stoffe in Trinkwasser verbindlich geregelt
- Jetzt Definition für Richtdosis:
 - alle Radionuklide außer H-3, Rn-222 mit kurzlebigen Rn-Zerfallsprodukten und K-40
 - Definition der Berechnung:
 Referenzaktivitätskonzentrationswerte der relevanten Radionuklide und die angenommene Trinkwasserverzehrsmenge/Jahr

Literatur

https://doris.bfs.de/jspui/handle/urn:nbn:de:0221-20100319945

Strahlenexposition durch natürliche Radionuklide im Trinkwasser in der Bundesrepublik Deutschland

Fachbereich Strahlenschutz und Umwelt

http://www.bmub.bund.de/fileadmin/bmuimport/files/pdfs/allgemein/application/pdf/leitfaden_trinkwasser_bf.pdf

> Leitfaden zur Untersuchung und Bewertung von Radioaktivität im Trinkwasser

Empfehlung von BMU, BMG, BfS, UBA DVGW und BDEW – erstellt unter Mitwirkung von Ländervertretern

Trinkwasserverordnung 2001: Neufassung der Trinkwasserverordnung vom 10. März 2016 BGBI: 2016, Teil I, Nr. 12, S. 459-491

